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Abstract 
 

In this report we mainly study the limitations of the best-known continuous time model, the 
Black-Scholes model, and other analytical models which are the improvements of Black-
Scholes formula. 
 
We firstly discuss defects of Black-Scholes assumption (part 2). Later, we are going to give  
basic theory about jump-diffusion model  and volatility models: Smile, stochastic and 
uncertain. (part 3 and 4).  
 
The jump-diffusion process describes better the reality by both point of view, economic 
(microeconomic logic) and by the statistical time-series (explaining the skewness, fatter tails, 
and abnormal movements of prices).  
 
Volatility smiles and surfaces show directly that volatility is not a simple constant. The 
classical way of dealing with random variables is to model them stochastically.We can do the 
same for volatility. There is also the  uncertain volatility model which assume volatility to lie 
within a range of values. 
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1. Introduction 
 
Black-Scholes model was developed by Fischer Black and Myron Scholes in 1973. Myron 
Scholes and Robert C. Merton were awarded the Nobel Prize in Economics for their work in 
developing the Black-Scholes formula in 1997. Regrettably, Fisher Black died August 1995. 
The model describes the value of a European option on an asset with no cash flows and 
requires only five inputs: the asset price(S), the strike price(E), the time to maturity(T), the 
risk-free rate(R) of interest and the volitility(σ). 
 
The model is used by everyone working in derivitives, whether they are salesman, trader or 
quants. In many ways, especially with regards to commercial success, the Black-Scholes 
model is remarkably robust. In words, we can not say that we have mastered option pricing 
theory unless we undersand the Black-Scholes formula. Nevertheless, there is room for 
improvement. Certainly, we can find models that better describe the underlying, such as 
volatility models and jump diffusion model.  
 
Several models for volatility have been proposed in the option pricing literature. The simplest 
model assumes constant volatility. This was the approach taken by Black and Scholes (1973) 
and Merton (1973) in the work which laid the foundations for the modern analysis of options 
and still explain observed market prices for options. More complicated models assume 
volatility surfaces across underlying asset prices and time. 
 
The classical way of dealing with random variables is to model them stochastically.We can do 
the same for volatility. Stochastic volatility is a generalization where the instantaneous 
volatility becomes a random variable σ(t), which is then described by a stochastic process 
model. 
 
The  uncertain volatility model was independently developed by Lyons (1995) and 
Avellaneda et al. (1995). In this case, volatility is assumed to lie within a range of values. All 
that can be computed are the best case and the worst case prices, for a specified long or short 
position. By assuming the worst case, an investor can hedge his/her position and obtain a non-
negative balance in the hedging portfolio, regardless of the actual volatility movement, 
provided that volatility remanins within the specified range.  
 
Merton (1976) suggested that distributions with fatter tails than the lognormal might explain 
the tendency for deep-in-the-money, deep-out-of-the money, and short-maturity options to 
sell for more than their Black-Scholes value, and the tendency of near-the-money and longer-
maturity options to sell for less. Merton priced options on jump-diffusion processes under the 
assumption of diversifiable jump risk and independent lognormal distributed jumps. 
Subsequent work by Jones (1984), Naik and Lee (1990), and Bates (1991) indicates that 
Merton's model with modified parameters is still relevant even under nondiversifiable jump 
risk. Others have proposed alternate option pricing models under fat-tailed shocks: 
McCulloch's (1987) stable Paretian model, Madan and Seneta's (1990) variance-gamma 
model, and Heston's (1993b) gamma process.1 
                                                 
1 CENTRE OF BUSINESS ANALYSIS AND RESEARCH, (CoBAR), DIVISION OF BUSINESS & ENTERPRISE, UNIVERSITY OF 
SOUTH AUSTRALIA, WORKING PAPERS, ISSN 1443-2943: http://business.unisa.edu.au/cobar/workingpapers/cobar/2000-04.pdf 
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2. Black – Scholes defects2  
 

2.1 Delta hedging is continuous 
 
This is definitely not true because hedging must be done on a discrete time. Often the time 
between rehedges will depend on the level of transactions costs in the market for the 
underlying; the lower the costs, the more frequent the rehedgning. 
 

2.1.1 What is delta hedging? 
 

 
Delta hedging means holding one of the option and short a quantity ∆ of the underlying. It 
is a way to reduce or even eliminate the risk by carefully choosing ∆. 
 
Suppose Π  is the value of a portfolio, 
 
Π  = V(S,t) – ∆S 
 
dΠ  = dV – ∆dS          
 

dΠ  = dt
t
V
∂
∂ + 

2
1

+
∂
∂ dS

S
V σ2S2 2

2

S
V

∂
∂

– ∆dS 

 
The terms which with dS are random term and random terms are the risk in this portfolio. 
In order to eliminate risk, the random terms are better disappeared. 
 

(
S
V
∂
∂ –∆) dS = 0  ⇒  ∆ = 

S
V
∂
∂  

 

2.1.2 Black-Scholes assumption of continuous delta hedging 
 
Delta can be expressed as a function of S and t, for example call option: 
 
Call: e-D(T-t) N(d1)                    
 
and from Black-Scholes formula, we know 
 
d1=[ log (S/E) + (r-D-1/2 σ2)(T-t)] / σ tT −  
 
Since variables S and t are ever-changing variables, the number of assets held (∆) has to 
continuously change to maintain a delta neutral position. 

                                                                                                                                                         
 
2 Paul Wilmott on Quantitative Finance, Chapter 22 & Paul Wilmott Introduces Quantitative Finance, Chapters 
8,10. 
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2.1.3 Delta hedging can not be done continuously in practice 
 
 
Changing the number of assets held (∆) requires the continual purchase or sale of the 
stock. This is called rehedging or rebanlancing the portfolio. The time between rehedges 
will depend on the level of transaction costs in the market. The lower the costs, the more 
frequent the rehedging. 

 
In highly liquid market where it is relatively costless to buy and sell, the delta hedging 
may take place very frequently. But in less liquid markets, the hedging may take place less 
frequently since you may lose a lot on bid-offer spread. Moreover, you may not even be 
able to buy or sell in the quantities you want. Then, there is risk that has not been 
eliminated. 
 
Therefore, we can say the at the Black-Scholes assumption of continuous delta hedging is 
too perfect. In practice, hedging must be done in discrete time. 
 

 

2.2 There are no costs in delta hedging 
 
 
In some markets the cost of delta hedging is insignificant while in other markets, it is 
expensive since there is a bid-offer spread on most underlyings. Therefore, we cannot rehedge 
as often as we can.  
 
The difference between markets is due to the number of participants. 
 

2.3 Volatility is a known constant (or a known deterministic function) 
 
 
The Back-Scholes formulae require the volatility to be a known deterministic function of time 
while the Back-Scholes equation requires volatility to be a known function of time and the 
asset value. However, neither of this is true because volatility is very variable and 
unpredictable. Thus, volatility is not a constant nor a deterministic function of time and the 
underlying.  
 
In order to observe or measure volatility, one must place a bound on its value which restricts 
it to lie within a given range. 
 
We will give the details in the Part 3 of the report. 
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2.4 The underlying asset path is continuous 
 
 
The market is discontinuous, meaning from time to time they ‘jump’, which is not 
incorporated in the lognormal asset price model.  
 
It is said ‘jump’ because first, the sudden moves occur too frenquently and they are too large 
to be from a normaly distributed function and second because they are unhedgeable meaning 
the movements are too sudden for continuous hedging. Thus, a jump-diffusion model 
incorporates discontinuities into the price path, however risk elimination is no longer possible. 
(See part 4) 

 
 

3. Volatility Models3 
 

3.1. Volatility Smiles and Surfaces 
 
 
One of the incorrect assumptions of the Black-Scholes world is that the volatility of the 
underlying is constant. If volatility is not a simple constant then perhaps it is a more 
complicated function of time and/or the underlying.  
 

3.1.1 Implied volatility and volatility smiles 
 
 
In the Black-Scholes formula, if we put in the expiry, the strike, the underlying and the 
interest rate together with the volatility, we can get the price easily, since volatility is given. 
But in the real life, how do we know what volatility to put into the formulas? Normally, a 
trader can see on his screen that a certain call option with six months until expiry and a strike 
of 100 is trading at 6.51 with the underlying at 101.5 and a short-term interest rate of 8%. Can 
we use this information in some way? Yes, if we can see the price at which the option is 
trading, we can take the price and deduce the volatility. This is called the implied volatility. It 
is the volatility of the underlying which when substituted into the Black-Scholes formula 
gives a theoretical price equal to the market price. 
 
The shape of this implied volatility versus strike curve is called the smile. In some markets it 
shows considerable asymmetry, a skew, and sometimes it is upside down in a frown.  
 
In order to give reader an intuitive picture, we will show how the shape looks like by using 
the real data. Firstly we find the information of H&M call option from the Stockholm 
Exchange Market, then we can use this information to calculate the implied volatility and 
draw the graph. (see figure 1,2 and 3) 
 

                                                 
3 Paul Wilmott on Quantitative Finance, Chapters 25, 26,27, 28. 
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The implied volatility and the smile implicate that the volatility is not constant, it varies with 
strike price. 
 

 
Figure 1: Option price of  H&M from  the Stockholm Stock Exchange.(www.stockholmsborsen.com) 
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Figure 2: Calculation of Implied Volatility Smile.(http://janroman.net.dhis.org)  

Figure 3: Implied volatility against strike price of  H&M.(http://janroman.net.dhis.org). 
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3.1.2. Time-dependent volatility 
 
 
In table 1 are the market prices of European call options with one, four and seven months 
until expiry. All have same strike price 105 and the underlying asset is currently 106.25. The 
short-term interest rate over this period is about 5.6%. If we calculate by substitution into the 
Black-Scholes call formula, these prices are consistent with volatility of 21.2%, 20.5%, and 
19.4%for the one-, three- and seven-month options respectively. Clearly, if the volatility is 
constant for the whole seven months, the prices are cannot be correct.  
 
 
 
Expiry 

 
Strike price 

 
Current price 

 
Interest rate 

 
Value of option 

 
Volatility 

1 month 105 106.25 5.6% 3.50 21.2% 
3 month 105 106.25 5.6% 5.76 20.5% 
7 month 105 106.25 5.6% 7.97 19.4% 
Table 1.  Market prices of European call oprions. 
 
 
We better confirm this issue by using the Ericsson’s history data. At figure 4, you can see how 
volatility appears to change with time. 
 
 

Figure 4:Volatiltiy against time to maturity of Ericsson. (http://janroman.net.dhis.org). 
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3.1.3. Volatility Surfaces 
 
 
As the above discussion, we have already known that volatility is not only time-dependent but 
also price-dependent. In fact, we may as well go all the way and assume that volatility is a 
function of both the asset and the time. 
 
The volatility surfaces can show us how implied volatility against both time and strike in a 
three dimensional plot. Now, the volatility surfaces are commonly used for pricing and 
hedging exotic contracts. 
 
In this part, we just want to give a rough picture about how volatility surface looks like and 
it’s dynamic behaviour.   
 
 
 
 

 
 
 
Figure 5: shows the average profile of the implied volatility of DAX options as a function of  time to maturity 
and strike, 1999-2001. It is a non-flat surface. ("Stochastic Models of Implied Volatility Surfaces”---
http://papers.ssrn.com). 
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Figure 6: the daily implied volatility variations for SP 500 Index options. It reflects an overall shift in the level 
of all implied volatilities. ("Stochastic Models of Implied Volatility Surfaces”---http://papers.ssrn.com). 

 
 
 
Figure 7: the daily implied volatility variations for SP 500 Index options. It reflects opposite movements in (out 
of the money) call and put implied volatilities. ("Stochastic Models of Implied Volatility Surfaces”---
http://papers.ssrn.com). 
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Figure 8: the daily implied volatility variations for SP 500 Index options. It reflects changes in the convexity of 
the surface. ("Stochastic Models of Implied Volatility Surfaces”---http://papers.ssrn.com). 
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3.2. Stochastic Volatility 
 
 
In this part, we focus on modelling volatility as a stochastic variable, how to price contracts 
when volatility is stochastic, what is market price of volatility risk, and some named 
stochastic volatility models. 
 

 

3.2.1. Modelling volatility as a stochastic volatility 
 
 
We continue to assume that S satisfies 
 

dS = µSdt + σSdX1 , 
 

and we further assume that volatility satisfies 
 

dσ = p(S, σ, t) dt + q(S, σ, t) dX2 
 
The tow increments dX1 and dX2 have a correlation of ρ. The choice of functions p(S, σ, t) 
and q(S, σ, t) is important to the evolution of the volatility, and thus to the pricing of 
derivatives. (The choice of these functions will not be discussed in this report) 
 
The value of an option with stochastic volatility is a function of three variables, V(S, σ, t). 
 
 

3.2.2. Price contracts when volatility is stochastic 
 
 
When volatility is stochastic we are faced with the problem of having a source of randomness 
that cannot be easily hedged away. Because we have two sources of randomness we must 
hedge our option with two other contracts, one being the underlying asset as usual, but now 
we also need another option to hedge the volatility risk. We therefore must set up a portfolio 
containing one option, with value denoted by V(S, σ, t), a quantity –∆ of the asset and a 
quantity –∆1 of another option with value V1(S, σ, t). 
 
Thus we have 
 

П = V – ∆S – ∆1V1 
 
 



Black- Scholes Limitations 
___________________________________________________________________________ 

 

___________________________________________________________________________ 15

By using Itô’s lemma on function of S, σ and t, the change in this portfolio in a time dt is 
given by 
 

dtVq
S

VqS
S
VS

t
VdtVq

S
VqS

S
VS

t
Vd 




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To eliminate all randomness from the portfolio we must choose 
 
 

01
1 =∆−
∂
∂

∆−
∂
∂

S
V

S
V to eliminate dS terms, and 01

1 =
∂
∂

∆−
∂
∂

σσ
VV to eliminate dσ terms. 

 
This leaves us with 
 

dtVq
S

VqS
S
VS

t
VdtVq

S
VqS

S
VS

t
Vd 








∂
∂

+
∂∂

∂
+

∂
∂

+
∂
∂

∆−







∂
∂

+
∂∂

∂
+

∂
∂

+
∂
∂

=Π 2
1

2
21

2

2
1

2
221

12

2
2

2

2

2
22

2
1

2
1

2
1

2
1

σσ
ρσσ

σσ
ρσσ

       
      = r П dt = r (V – ∆S – ∆1V1) dt 
 
 
where we used arbitrage arguments to set the return on the portfolio equal to the risk-free rate. 
 
This is one equation with two unknowns, V and V1. So we collect all V terms on the left-hand 
side and all V1 terms on the right-hand side, we find that 
 

=
∂
∂
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Since the two options will typically have different payoffs, strikes or expires, the only way for 
this to be possible equal is for both sides to be independent of the contract type. Both sides 
can only be function of the independent variables,. Thus we have 
 

( )
σ

λ
σσ

ρσσ
∂
∂

−−=−
∂
∂

+
∂
∂

+
∂∂

∂
+

∂
∂

+
∂
∂ VqprV

S
VrSVq

S
VqS

S
VS

t
V

2

2
2

2

2

2
22

2
1

2
1

 

 



Black- Scholes Limitations 
___________________________________________________________________________ 

 

___________________________________________________________________________ 16

for some function λ(S, σ, t ). We usually write this equation as 
 

( ) 0
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It is the pricing equation. If we can solve it, then we will find the value of the option and the 

hedge rations. Note that we find two hedge ratios, 
S
V
∂
∂ and 

σ∂
∂V , since we have two sources of 

randomness that we must hedge away. The quantity p- λq is called the risk-neutral drift rate  
 
of the volatility. 
 
 

3.2.3. The market price of volatility risk 
 
 
The function λ(S, σ, t) is called the market price of volatility risk. What does this mean? 
 
Suppose we hold one of the options with value V, and satisfying the above pricing equation, if 
delta hedged with the underlying asset only, we have 
 

П = V – ∆S 
 
The change in this portfolio value is  
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Because we are delta hedging the coefficient of dS is zero. We find that 
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                   = - p
σ∂
∂V dt + λq

σ∂
∂V dt +

σ∂
∂V (pdt +qdX2) 

   

                   = λq
σ∂
∂V dt + q

σ∂
∂V  dX2 

 

                             = q
σ∂
∂V (λdt + dX2) 

 
Now, we can observe that for every unit of volatility risk, represented by dX2, there are λ 
units of extra return, represented by dt. Hence the name” market price of risk”. 
                    
 

3.2.4. Named stochastic volatility models 
 
 
Hull & White (1987) 
 
 
One of the stochastic volatility models considered by Hull & White was 
 

d(σ2) = a(b- σ2) dt + cσ2 dX2 

 
 
Heston (1993) 
 
 
In Heston’s model  
 
                                                 dσ = - γ σ dt + δ dX2 , 
 
with arbitrary correlation between the underlying and its volatility. 
 
 
 
GARCH 
 
 
Generalized autoregressive conditional heteroskedasticity, or GARCH for short, is a model 
for an asset and its associated volatility. As the time step tends to zero, the simplest GARCH 
model becomes the same as the stochastic volatility model 
 

d(σ2) = θφ( - σ2) dt + vσ2 dX2 
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3.3. Uncertain Volatility   

(The Model of Avellaneda, Levy&Parás and Lyons 1995) 

 

3.3.1. Motivation 
 
 
There are two traditional ways of measuring volatility: implied and historical. Whichever way 
is used, the result cannot be the future value of volatility; either it is the market’s estimate of 
the future or an estimate of values in the past. The correct value of volatility to be used in an 
option calculation cannot be known until the option has expired. Therefore, how to value 
option when volatility is uncertain is a problem. Normally, we can be more certain about the 
correctness of a range of values than a single value: we will be happier to say that the 
volatility of a stock lies within the range 20-30% over the next six months than to say that the 
average volatility over this period will be 24%. The range we choose may be the range of past 
historical volatility, or implied volatilities, or include both of these. Then, the range for 
volatility leads to ranges for the option’s value. Working in this area was started by 
Avellaneda, Levy, Paràs and Lyons with Uncertain Volatility Model in 1995. 
 
The Uncertain volatility Model is an extension of the Black-Scholes framework that 
incorporates uncertainty in the volatility of the underlying asset in the pricing and hedging of 
derivative securities. In uncertain volatility model, no statistical distribution for the stochastic 
volatility is specified; rather, a worst-case and best-case are considered. By assuming the 
worst case, an investor can hedge his/her position and obtain a non-negative balance in the 
hedging portfolio, regardless of the actual volatility movement, provided that volatility 
remains within the specified range. 
 
 

3.3.2. The basics of the uncertain volatility model 
 
 
Let us suppose that the volatility lies within the band 
 

σ- < σ < σ+ 

Same with the Black-Scholes hedging and no-arbitrage arguments, we firstly construct a 
portfolio of one option, with value V(S,t), and hedge it with – ∆ of the underlying asset. The 
value of this portfolio is thus 
 

П = V – ∆S 
 

We still have  
dS = µSdt + σSdX 
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So the change in the value of this portfolio is  
 

d П = dV – ∆dS 
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since the choice of ∆ = 
S
V
∂
∂  eliminates the risk: 
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We will assume that the volatility over the next time step is such that our portfolio increases 
by the least amount. If we have a long position in a call option, we assume that the volatility is 
at the lower bound σ-; for a short call we assume that the volatility is high. This amounts to 
considering the minimum return on the portfolio, where the minimum is taken over all 
possible values of the volatility within the given range. The return on this worst-case portfolio 
is then set equal to the risk-free rate: 
 

min  (d П) = r П dt 
                                                                     σ- < σ < σ+ 

 

⇒  min     dt
S
VS

t
V
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
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
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22

2
1σ = r (V- S

S
V
∂
∂ ) dt 

                                       σ- < σ < σ+ 
 
Now observe that the volatility term in the above is multiplied by the option’s gamma. σ will 
be considered as function of gamma. Therefore the value of σ will give this its minimum 
value depends on the sign of the gamma. When the gamma is positive, we muse choose σ to 
be the lowest value σ- and when it is negative we choose σ to be its highest value σ+ for 
keeping the amounts to be minimum return. 
 
Then we find that the worst-case value V- satisfies: 
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t
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Where 
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2

2

S
V

∂
∂

=Γ
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and 
 

 
                                               σ(Γ ) = 

 
 
 
we can find the best option  value V+, by solving 
 
 

2
1

+
∂
+∂

t
V σ(Γ )2 S2 +

++

−
∂
∂

+
∂
∂ rV

S
VrS

S
V

2

2
  = 0 

 
where 
 

2

2

S
V
∂
∂

=Γ
+

 

 
but this time 
 

 
                                               σ(Γ ) = 

 
 
 
 
In the real life, we won’t find much use for the problem for the best case in practice since it 
would be financially suicidal to assume the best outcome. We go from the worst-case 
equation to the best. In other words, the problem for the worst price for the long and short 
position in a particular contract is mathematically equivalent to valuing a long position only, 
but in worst and  best cases.

σ+    if  Γ > 0 

σ-     if  Γ  < 0 

σ+    if  Γ < 0 

σ-     if  Γ  > 0 
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4. Jump diffusion4 
 
 
Equities, currencies or interest rates do not follow the lognormal random walk. One evidence 
is the sudden moves of these financial quantities that can lead to unexpected fall or crash. 
These sudden moves occur more frequently than the return with Normal-distribution follow 
with a reasonable volatility. These moves looks discontinuous which indicates that the asset 
has jumped. 
 
 
The difference between the real distribution of the assets and the Normal distribution is that 
the peak of the real distribution is higher than the Normal distribution, which means that that 
there is a likelihood of a small move that we would expect. In addition, the real distribution 
has flatter tails meaning there is a greater chance of large rise or fall than the Normal 
Distribution. 
 
 
Before, when calculating random walks, continuous Brownian motion, which represents high 
level of normal activity, is based on normal distribution increment. In other words, we add the 
return from one day to the next a normal distribution random variable with a variance 
proportional to timestep to the calculation of the asset price. Now, we must also add the 
jump-diffusion model for an asset. For this extra part we use the Poisson process, which 
represents rare and extreme events. The size of the jump is constant but the probability of a 
jump increases with duration. 
 
 
A Poisson process dq is defined by 
 
 
  dq =    0 with probability 1 – λ dt  
 1 with probability λ dt                 ,  
 
 
 
where λ dt is the probability of a jump in q in the timestep dt.  
 
The parameter λ is called the intensity of the Poisson process. Thus, the price of an asset can 
be written as 
 

dS = µSdt + σSdX + ( J - 1)Sdq 
 
There are two sources of risk, the diffusion, dX and the jump, dq and if there is a jump (dq = 
1) then S immediately goes to the value JS under the assumption that there is no correlation 
between Brownian motion and Poisson Process . 
 

                                                 
4 Paul Wilmott on Quantitative Finance, Chapter 29. 
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The random walk in log S is 
 

d(log S) = 





 − 2

2
1σµ dt + σ dX + (log J)dq. 

 
This is just a jump-diffusion version of Itô.  
 
The price of a European non-path-dependent option can be written as 
 
 

∑
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=1 !
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In the above 
 

( )k+= 1' λλ ,  
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22 σσσ  and 
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+

+−=
)1log(λ  

 
 
And VBS is The Black- Scholes formula for the option the absence of jumps and k = E[J-1] . 
The formula of the  price of a European non-path-dependent option represents the sum of 
individual Black-Scholes values, each are weighted according to the probability that there will 
have been n jumps before expiry. 
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Figure 9:Spreadsheet simulation of a jump-diffusion process and a non-jump-diffusion process. In this example 
the stock jumps by 20% at random times given by a Poisson process.

= E5*( 1+$B$2*$B$6+$B$3*SQRT($B$6)*(RAND() + RAND() + 
RAND() + RAND() +RAND() +RAND() + RAND() +RAND() +RAND() 
+RAND() +RAND() +RAND() -6) - B$5*IF(RAND()<$B$4*$B$6, 1, 0) 
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Figure 10. Graph of an asset price with and without  jump. 
 

 

4.1. Hedging when there are jumps 
 
 
Holding a portfolio of one long option position and a short position in some quantity ∆ of the 
underlying: 
 

П = V(S, t) - ∆S 
 
The change in the value of this portfolio from time t to t+dt is due partly to the change in the 
underlying and partly to the change in the underlying: 

 
dП = dV- ∆dS 

 

Spreadsheet simulation of jump-diffusion process
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Notice that ∆ has not changed during the timestep because there are no changes in S. From Itô 
we have 
 

dV= dt
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Thus the portfolio changes by 
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This is also a jump-diffusion version of Itô. 

 
If there is no jump at time t so that dq = 0 then we could eliminate the risk by chosen ∆ = 
∂V⁄∂S. If there is a jump and dq = 1 then the portfolio changes in value by an amount which 
cannot be hedged away. In that case perhaps we choose ∆ to minimize the variance of dП . 
This presents us with a dilemma. We don’t know weather to hedge the small diffusive 
changes in the underlying which are always present or the large moves which happen rarely. 
 

4.1.1. Hedging the diffusion 
 
 
If we chose ∆ = ∂V⁄∂S then we are reducing the random term, the risk in our portfolio, to zero. 
Thus, we are following a Black-Scholes type of strategy, hedging the diffusive movements. 
The changes in the portfolio value is then 
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The portfolio now evolves in a deterministic and nondeterministic (cannot be determine in 
advance) jump in its value. According to Merton (1976) the jump component of the asset 
price process is uncorrelated with the market as a whole, and then the risk in the discontinuity 
should not be priced into the option. Diversifiable risk should not be rewarded. Therefore, we 
set the expectation of this expression and set equal to the risk-free return (no arbitrage) from 
the portfolio. 
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4.1.2. Hedging the jumps 
 
 
Another possible way is to hedge both the diffusion and the jumps as much as we can. 
 
The change in the value of the portfolio with an arbitrary ∆ is, to leading order, 
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The variance in this changes, which is a measure of the risk in the portfolio is 
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This is minimized by the choice 
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( This formula is obtained by differentiation with respect to ∆  and set the resulting expression 
equal to zero). 
 
So, a value of an option as pure discounted real expectation under this best-hedge strategy 
then we find that  
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where, 22 ])1[( σλ +−= JEd   
 
when λ = 0 this collapses to the Black- Scholes equation. And if there is no diffusion, σ = 0, 
then we have  
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and 
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4.2. Jump Volatility 
 
 
As we model volatility as a jump process, one can see that volatility is constant for a while, 
and then it randomly jumps to another value. Thus, volatility is in one of two states σ- or σ+ > 
σ- . The jump from lower to higher value will be modelled by Poisson process with intensity 
λ+ and intensity λ- going the other way. 
  
If we hedge the random movement in S with the underlying, then take real expectations, and 
see the return on the portfolio equal to the risk-free rate, we arrive at 
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for the value V+ of the option when the volatility is σ+. Similarly, we find that  
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for the value V- when volatility is σ-. 
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Figure 11. Jump volatility. (Paul Wilmott on Quantitative Finance, Chapter 29) 
 

4.3. Jump Volatility with deterministic decay 
 
 
A jump volatility that resembles the real behaviour of volatility also contains exponential 
decay of the volatility after the jump. 
 

σ (τ) = σ- + (σ+ - σ-) e-vτ 

 

where τ is the time since the last sudden jump in the volatility and v is a decay parameter. At 
any time, governed by a Poisson process with intensity λ, the volatility can jump from its 
present level to σ+. 
 
The value of an option is given by V(S, t, τ),  
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This value means that we have delta hedge with the underlying to eliminate the risk due to 
movement of the asset but we have taken real expectations with respect to the volatility jump. 
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Figure 4. Jump volatility with exponential decay. (Paul Wilmott on Quantitative Finance, Chapter 29) 
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5. Conclusion 
 
Black-Scholes model is the foundation for the modern analysis of options. However, there are 
many faults with it’s assumptions. Therefore, some models was created to improve on Black-
Scholes from a technical and mathematical point of view, such as volatility smile and 
surfaces, stochastic volatility, uncertain volatility and jump-diffusion. 

Volatility smiles and surfaces show directly that volatility is not a simple constant. It is a more 
complicated function of time and function of assets ,as well as function of both. Because of 
the profound importance of volatility in the pricing of options, and because volatility is hard 
to estimate, observe or predict, the classical way is to model it stochastically.  

In uncertain volatility model , volatility is assumed to lie within a range of values, and this 
range of volatility lead to range for the option price: best case and worst case. The best case is 
not usually used in practice since it would be financially suicidal to assume the best outcome. 
Moreover, the problem for the worst price for long and short positions in a particular contract 
is mathematically equivalent to valuing a long position only. In other words, if you calculate 
the worst case for long position, it means the best case for short position.  

The advantage of jump-reversion process is that describes better the reality by both point of 
view, economic (microeconomic logic) and by the statistical time-series (explaining the 
skewness, fatter tails, and abnormal movements of prices). But there is a cost. The two 
problems with jump-diffusion processes are: the impossibility to build a riskless portfolio; and 
the difficulty with parameters estimative.  

The first important problem when considering jumps in the option valuation is that is 
impossible to build a perfect hedge. So, in general is not possible to build a riskless portfolio 
as in Black-Scholes-Merton contingent claims approach, unless (1) assume that the jump-risk 
is non-systematic (uncorrelated with the market portfolio) and so returning the risk-free 
interest rate  or (2) look for the minimum variance of the portfolio for hedging and valuation 
purposes. 

The second problem is the job of the parameters estimative: There are several parameters to 
estimate, and in general is hard to estimate the law (and the parameters) for the jump-size 
distribution  (mainly because we are interested in large but rare jumps, so there is a lack of 
data to estimate the jump-size parameters).  
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